Networks In City

Interopérabilité des réseaux énergétiques dans les zones urbaines

Figure 1
Optimisation de l’intégration de réseaux existants et de la pénétration de solutions de mobilité à bas carbone

L'objectif global du projet proposé est de développer un cadre d'optimisation flexible pour une coexistence viable et une interopérabilité entre plusieurs réseaux d'approvisionnement en énergie dans une zone urbaine en termes de : politiques d'efficacité énergétique, durabilité financière, robustesse et résilience de l'approvisionnement en énergie, gestion opérationnelle de l'infrastructure d'approvisionnement, disponibilité des vecteurs énergétiques, évolutions futures de la demande en énergie, telles que la mobilité à faible émission de carbone.

 


Objectifs du projet (EN)

Three specific objectives will be pursued in the proposed project:

Develop a flexible, yet numerically tractable, optimization framework for the integration and interoperability of energy networks based on:
covering the spatialized energy demand in terms of energy services (heating, cooling, power) for residential buildings, industrial and service-oriented dwellings, administration entities, as well as for mobility purposes (filling stations);
complementarity of energy supply in terms of energy load complex temporal profiles: seasonal, weekly, daily and intraday;
new or alternative usages for energy vectors distributed by the existing grids: peak demand covering, backup services, additional power generation to supply future massive deployment of electic heat pumps supplied by anergy grid, supply to filling stations for penetration of low-carbon mobility;
change in networks’ infrastructures, such as integration of storage capabilities of different dimensions and/or integration of renewable energy production capacities (e.g. biogas for the natural gas network, PV production for power distribution grid);
energy conversion technologies localization with respect to energy demand profiles, including multi-energy technologies such as cogeneration units, capable of generating both power and heat (to be used locally or re-injected in the respective grids);
cost optimisation for both CAPEX and OPEX of the three co-existing networks.
Focused application of the developed optimization framework to the specific integration of the foreseen anergy network GeniLac in the Canton of Geneva. Indeed, the implementation of this new grid used for both heating and cooling in the northern part of the Canton in particular by way of a large number of electric heat pumps, will be considered as a new constraint on the existing natural gas and electricity distribution networks. Different scenarios of integration will be proposed and successively optimized in terms of design and integration.
Validation of the developed optimized scenarios by way of the IntegrCiTy co-simulation prototype platform, in terms of networks integration, design and dimensioning. Detailed performance indicators will be produced and will allow a quantitative comparison of the proposed scenarios.

 

Équipe


Prof. Massimiliano Capezzali
Chef de projet
Profil people@hes-so

Marten Fesefeldt

Profil people@hes-so

Mokhtar Bozorg

Profil people@hes-so

Matthieu De Lapparent

Profil people@hes-so